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Two-point spectral correlations for the square billiard
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Abstract. We investigate the two-point correlations in the quantum spectrum of the square
billiard. This system is unusual in that the degeneracy of the energy levels increases in the
semiclassical limit in such a way that the average level separation is not given by the inverse
of the mean density of states. Hence, for example, the standard level spacings distribution does
not tend to the Poissonian limit expected for integrable systems. In this paper we calculate the
leading-order asymptotic form of a degeneracy-weighted two-point correlation function using
a combination of probabilistic techniques and classical number theory. The result exhibits
number-theoretical fluctuations about a mean which is a sum of two terms: one having the usual
(constant) Poissonian form and the second representing a small correction which decays as the
inverse of the correlation distance. This is confirmed by numerical computations.

1. Introduction

The energy levels of generic, integrable systems are conjectured to be Poisson distributed in
the semiclassical limit [4]. This belief is supported both by theories based on semiclassical
asymptotics [4, 2, 19, 16, 5, 17] and by extensive numerical computations [3, 6].

The square billiard, although completely integrable, is non-generic in this respect. Its
levels, when suitably scaled, are given by

Em,n = m2+ n2 (m, n) ∈ N2, (m, n) 6= (0, 0) (1)

and so the density of states may be written in the form

d(E) =
∞∑
n=1

r2(n) δ(E − n) (2)

wherer2(n) is the number of ways thatn can be written as a sum of two squares. Unlike
the case of typical systems, these levels become increasingly degenerate asEm,n → ∞.
One consequence of this is that the mean densityd = r2(n) = π

4 (obtained by counting the
number of lattice points in a quarter of a circle) does not equal the inverse of the average
non-zero level spacing, and so the standard spectral unfolding does not lead to a limiting
statistical distribution. For example, the level spacings distribution tends to aδ-function at
the origin.

These degeneracies have their origin in the number-theoretical nature of the levels. It
is a classical result of Landau [15] that if

B2(n) =
{

1 if r2(n) > 0

0 if r2(n) = 0
(3)
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then the local average ofB2(n) asn→∞ is given by

B2(n) ' C2√
ln n

(4)

where

C2 =
√√√√1

2

∏
r

(
1

1− 1
r2

)
(5)

with r denoting the subset of primes congruent to 3 modulo 4. The product in (5) converges
to giveC2 ' 0.764. For this to be consistent withr2(n) = π

4 , the logarithmically increasing
separation between the levels implied by (4) must be compensated by a corresponding
logarithmic increase in the mean degeneracy.

An important consequence of this is that the two-point correlation function
B2(n)B2(n+ h), which is proportional to the probability that bothn andn+ h are energy
levels, tends, in the limitn→∞, to zero for any fixedh. Our main aim here is to show
that this problem does not occur if the levels are weighted by their degeneracies; that is, for
r2(n)r2(n+ h) the limit is finite. The limiting form we find in this case shows two levels of
structure. The function itself depends strongly on the prime factorization ofh and so exhibits
large fluctuations. However, a local average with respect toh reveals an underlying trend
that corresponds to a sum of two terms: one, a constant, being the usual Poisson correlation
function, and the other representing a small deviation from pairwise randomness which
decays as the inverse of the correlation distance. This behaviour is strikingly reminiscent
of that implied by the Hardy–Littlewood conjectures [10] for the primes [14].

The methods we use to calculate these correlations involve a combination of probabilistic
ideas and number-theoretic results. This provides the most direct approach to obtaining the
leading-order behaviour in the semiclassical limit. The price to be paid is that the analysis
is essentially heuristic, in that we cannot give rigorous estimates for the size of the error
terms. For this reason, the results are also tested against numerical computations.

2. Counting representations

In this section we review the basic ideas underlying probabilistic number theory and show
how these can be used to calculate the averages of the counting functionsB2 andr2. As an
example, we shall demonstrate that the results obtained using these methods are consistent
with the classical asymptotic formulae forr2(n) andB2(n) discussed in the introduction.
This then provides the justification for our use of these same methods to evaluate the
associated autocorrelation functions in subsequent sections.

We begin by introducing some notation. Henceforth, the primes will be denoted by
q; p will denote primes congruent to 1 modulo 4; andr will denote primes congruent to
3 modulo 4. The prime decomposition of an integern into prime powers may therefore be
written uniquely as

n = 2m2(n)
∏
p

pmp(n)
∏
r

rmr (n).

Thus in general,mq(n) is the power to whichq is raised in the prime decomposition ofn.
The reason for dividing primes into residue classes modulo 4 is that it is a classical

result in number theory that [9, 11]

B2(n) =
{

1 if 2|mr(n) ∀ r
0 otherwise

(6)
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and

r2(n) =

∏
p

(mp(n)+ 1) if 2|mr(n) ∀ r

0 otherwise.
(7)

That is, an integer,n, is representable as a sum of two squares if and only if all primes that
are congruent to 3 modulo 4 occur to even (including zero) powers in its prime factorization.
The number of such representations in turn depends on the exponents of the primes that are
congruent to 1 modulo 4.

It is the dependence on prime decomposition that opens the way for us to use
probabilistic techniques. These methods are reviewed in [18, 12]. They have previously
been employed to re-derive (4) in [1], and applied to other quantum chaological calculations
in [13, 14]. The basic idea is that in averaging number-theoretical functions such asr2(n)

and B2(n) with respect ton, one can treat the prime factors ofn as being statistically
independent, with the probabilityP(qm||n) that q appears with exponentm in the prime
factorization ofn being

P(qm||n) = 1

qm
− 1

qm+1
= 1

qm

(
1− 1

q

)
. (8)

Here a natural interpretation of the first equality follows from the fact that one inqm

integers are divisible byqm, and one inq(m+1) are divisible by higher powers ofq. Similarly
in the second equality, the first factor may be viewed as representing the probability that
qm dividesn, and the second as representing the probability that the result of the division
is then itself not divisible byq. For further details and examples, see [18].

It follows that the probability that a given primer occurs to an even power in the
decomposition ofn is

P(mr(n) even) =
M∑
m=0

1

r2m

(
1− 1

r

)
(9)

whereM is some integer such thatn < r2M+2 ; higher powers clearly cannot contribute.
However, the sum converges rapidly, and so asn→∞

P(mr(n) even) '
∞∑
m=0

1

r2m

(
1− 1

r

)

=
(

1− 1

r

)(
1− 1

r2

)−1

.

(10)

The local average ofB2(n) with respect ton corresponds to the probability thatn can be
written as a sum of squares. It thus corresponds to the probability that all primesr < n

have even exponents and so is given by

B2(n) '
∏
r6n

(
1− 1

r

)(
1− 1

r2

)−1

. (11)

The product of factors(1− r−2)−1 converges to give a constant, while the product over the
remaining terms may be estimated using the prime number theorem and the fact that, by
Dirichlet’s theorem [11], the density of primes that are congruent to 3 modulo 4 is1

2. The
result is

B2(n) ' constant× 1√
ln n

. (12)
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This corresponds directly to Landau’s asymptotic formula (4). Unfortunately, the
probabilistic method is not refined enough to provide the correct value of the constant.
Essentially, this is because the prime products diverge, and only the leading-order asymptotic
form of lnB2(n) can be recovered asn → ∞. However, if we take this value as given,
then the constants that appear in the asymptotics of all other related quantities may be
obtained by normalizing with respect toB2(n). As an example, we will now obtain using
this approach the corresponding results forr2(n) and r2

2(n). Then, in subsequent sections,
we will show how the constants that appear in the associated autocorrelation functions can
be recovered in the same way.

Since the primes (and in particular thep and r primes) are to be treated as being
statistically independent, we have from (7) that

r2(n) ' B2(n)×
∏
p

[ ∞∑
m=0

(m+ 1)
1

pm

(
1− 1

p

)]
. (13)

The product and sum converge rapidly and hence each may be taken to infinity. Substituting
the expression (11) forB2(n) into this, we have

r2(n) '
∏
r

1(
1+ 1

r

) ∏
p

1(
1− 1

p

)
= L(1) = π

4

(14)

whereL(s) is Landau’sL-function. This corresponds exactly to the asymptotic result
usually proved using lattice-point counting methods.

As another example, we now computer2
2(n) in the same way. Clearly we have that

r2
2(n) ' B2(n)×

∏
p

[ ∞∑
m=0

(m+ 1)2
1

pm

(
1− 1

p

)]
(15)

where now the divergence of the product overp is not cancelled by that inB2. For this
reason, it is more convenient to consider

r2
2(n)B2

2
(n) ' B2

3
(n)×

∏
p

(
1− 1

p2

)
(

1− 1
p

)3

'
[∏

r

1

1+ 1
r

∏
p

1

1− 1
p

]3∏
p

(
1− 1

p2

) (16)

since now all prime products converge, and so the leading-order asymptotics is completely
determined by the corresponding expression forB2. Specifically, recognizingL(1) again
and substituting (4),

r2
2(n) '

(√
ln n

C2

)2 (π
4

)3∏
p

(
1− 1

p2

)
. (17)

Hence, recalling the explicit expression (5) forC2 and combining this with the product over
p-primes above, the result is23 × ζ(2)−1, whereζ(s) is the Riemann zeta-function. Finally,
usingζ(2) = π2/6 gives

r2
2(n) '

π

4
ln n. (18)
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Figure 1. The r-lattices

3. Two-point correlations

We are now in a position to use the probabilistic methods developed in the previous section
to compute the leading-order asymptotics of the correlation functionsB2(n)B2(n+ h) and
r2(n)r2(n+ h). Our approach will be to consider the contributions from each prime divisor
of h separately. First, we need to ensure thatn and n + h have representations as sums
of squares. This obviously corresponds to the requirement that everyr-prime occurs to an
even power in the factorizations of both integers. The probability of this happening is then
equal toB2(n)B2(n+ h). Next, we go on to consider thep-primes, since the powers to
which these occur, on average, inn andn+ h determiner2(n)r2(n+ h).

If every r-prime occurs to an even power in bothn andn+ h, the contribution to both
B2(n)B2(n+ h) and r2(n)r2(n+ h) is 1, otherwise it is 0. In averaging with respect ton
we need to evaluate the probabilities associated with these events. A useful way to think
about this is in terms of ‘r-lattices’. Ther-lattice itself we defined to be the set of integers
divisible by r. In the same way, therl-lattice consists of all the integers divisible byrl ,
and hence is contained within therj -lattice for all j < l.

Consider now the two pointsn andn + h with n free to move throughN. It may be
helpful to think of a marker of lengthh moving overN, with N displayed in terms of the
r-lattices, as shown in figure 1. For a non-zero contribution to the correlation functions, we
require that both ends of the marker rest on anrl-lattice with l even.

The first case we shall compute is whenmr(h) = 2k. Then for eachj in the range
06 j 6 2k, rj |n implies rj |(n+h), and so if one end of theh-marker lies on therj -lattice
then the other does as well. We shall refer to this by saying that theh-marker connects
points on therj -lattice. This is not true forj > 2k.

We now evaluate the mean contribution via an inclusion/exclusion expansion. To
first approximation, both ends of theh-marker will lie on ther0-lattice and the overall
contribution is 1. The leading correction to this involves taking into account the possibility
of either end of the marker lying on ther-lattice. The probability of one end lying on the
r-lattice is 1

r
, and there are two ends but, whenr|h, (i.e. whenk > 1), both ends will hit

the r-lattice together. The term we must subtract is therefore1
r
. If k = 0 only one end of

the marker can lie on ther-lattice and so then we must subtract twice this value. We now
add the probability that an end lies on ther2-lattice, which will be 1

r2 for k > 1, since then
both ends hit this lattice together. Ifk = 0 it is again twice this value. One can continue
in this way, considering each lattice in turn. For latticesrj with j 6 2k the contribution at
each stage is1

rj
; and if j > 2k it is 2

rj
. The overall contribution formr(h) = 2k is therefore

1− 1

r
+ 1

r2
− · · · + 1

r2k
− 2

r2k+1
+ 2

r2k+2
− · · · = 1− 1

r2k+1

1+ 1
r

. (19)

Next we consider the case whenmr(h) = 2k+ 1. Theh-marker connects all latticesrj

for j 6 2k + 1. For all higher power lattices, if one end of the marker hits an even power
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lattice, the other must lie on an odd power lattice; hencer occurs to an odd power in either
n or n+ h and so there is no contribution. For this case we thus have

1− 1

r
+ 1

r2
− · · · + 1

r2k
− 1

r2k+1
= 1− 1

r2k+2

1+ 1
r

. (20)

It therefore follows from the last two results that for all values ofk, if mr(h) = k the
contribution to bothB2(n)B2(n+ h) andr2(n)r2(n+ h) is

1− 1
rk+1

1+ 1
r

. (21)

The final factor that must be taken into account in the calculation ofB2(n)B2(n+ h) is
based on the following observation. For allr-primes,r2β = 1 mod 4 whenβ ∈ N. And
for a sum of two squares, all such primes must occur to even powers in the factorization of
n. In addition, for allp-primespβ = 1 mod 4 for allβ. It therefore follows that ifn has a
representation as a sum of two squares, then

n = 2m2(n)n1 with n1 = 1 mod 4. (22)

This means that any representable integern satisfiesnmod 4∈ {0, 1, 2}. We must therefore
take into account how the representable integers are distributed mod 2k, for eachk, and, in
particular, account for the distribution of pairsn andn+ h.

The first point is that it is easily verified that allk > m2(n) + 1 show the same pair
distribution structure, and that these contain all the information about smaller values ofk.
The general case we therefore need to consider whenm2(h) = k is the pattern for the
integers modulo 2k+1. With n = 2m2(n)n1 and n1 = 1 mod 4, as before, the possibilities
are shown in table 1, whereαi = 0, 1, . . . (2k−1−i − 1), and integers with no representation
have been omitted.Wi is the probability ofn mod 2k+1 taking the given form, usually
2i + αi 2i+2, shown in the left-hand column. For example ifk = 1, as already stated
nmod 4 ∈ {0, 1, 2}. The associated probabilities may then be calculated from (8) to be
{ 14, 1

2,
1
4}.

The pairs(nmod 2k+1, [n+ 2k] mod 2k+1) available and their probabilities (the product
of those given in table 1) are shown in table 2. The number of occurrences of each
variety of pair is simply the number of values taken byαi ; the only exception is that
in the pair (2k−1, 2k−1 + 2k), the second element has no representation and so makes no
contribution. The general weighting factorWm2(h) is then the sum of the probabilities listed

Table 1. The distribution of representable integers modulo 2k+1.

nmod 2k+1 Condition Probability

0 m2(n) > k + 1 W∞ = 1
2k+1

1+ α0 22 m2(n) = 0 W0 = 1
2k

2+ α1 23 m2(n) = 1 W1 = 1
2k

4+ α2 24 m2(n) = 2 W2 = 1
2k

.

.

.
.
.
.

.

.

.

2k−2 + αk−2 2k m2(n) = k − 2 Wk−2 = 1
2k

2k−1 m2(n) = k − 1 Wk−1 = 1
2k

2k m2(n) = k Wk = 1
2k+1
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Table 2. The distribution of pairs of representable integers.

(nmod 2k+1, [n+ 2k ] mod 2k+1) Probability Number of pairs

(0, 2k) W∞,k =
(

1
2k+1

)2
1

(1+ α0 22, 1+ α0 22 + 2k) W0,0 =
(

1
2k

)2
2k−1

(2+ α1 23, 2+ α1 23 + 2k) W1,1 =
(

1
2k

)2
2k−2

(4+ α2 24, 4+ α2 24 + 2k) W2,2 =
(

1
2k

)2
2k−3

.

.

.
.
.
.

.

.

.

(2k−2 + αk−2 2k, 2k−2 + αk−2 2k + 2k) Wk−2,k−2 =
(

1
2k

)2
2

(2k−1, 2k−1 + 2k) Wk−1,k−1 = 0 1
(2k, 0) Wk,∞ = 1 1

above, multiplied by 2k+1, the total number of pairs; that is,

Wm2(h) =


1 if m2(h) = 0

2m2(h)+1− 3

2m2(h)
if m2(h) > 1 .

(23)

We are now in a position to write down the result forB2(n)B2(n+ h). The key point

is that to obtain a convergent quantity it is natural to divide byB2
2
(n), for which we can

use (4). Then

B2(n)B2(n+ h)
B2

2
(n)

= Wm2(h)

∏
r

(
1+ 1

r

)2∏
r

1− 1
rmr (h)+1

1+ 1
r

= Wm2(h)

∏
r

(
1+ 1

r

)2∏
r-h

1− 1
r

1+ 1
r

∏
r|h

1− 1
rmr (h)+1

1+ 1
r

= Wm2(h)

∏
r

1− 1

r2

∏
r|h

1− 1
rmr (h)+1

1− 1
r

.

Here all prime-products converge. Now substituting in the asymptotic formula (4), we have
that

B2(n)B2(n+ h) = 1

2
Wm2(h)

(
B2(n)

C2

)2∏
r|h

1− 1
rmr (h)+1

1− 1
r

' 1

2 lnn
Wm2(h)

∏
r|h

1− 1
rmr (h)+1

1− 1
r

.

(24)

As expected, in the semiclassical limit, asn → ∞ this correlation function tends to zero
for all fixed h, because the spacing between the levels grows asn increases.

Since the probabilistic approach used above is essentially heuristic, we now compare
the results with those of a numerical computation. In the following we fixh and count the
number of pairs(n, n+ h) for which each integer in the pair has a representation as a sum
of two squares, withn averaged over the rangen ∈ {107 − 105, 107 + 105}. We then take
B2(n)B2(n+ h) to be the ratio of the number of pairs of representable integers to the total
number of pairs tested. Figure 2 shows the ratio of the numerical results obtained to the
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Figure 2. Ratio of (numerics)/(theory) forB2(n)B2(n+ h).

values predicted by directly evaluating the prime product in (24). The value ofB2(n) is
taken from the Landau result evaluated atn = 107 (the numerically calculated probability
for B2(n) is the same). The good agreement clearly provides support for the approach taken.
Interestingly, the ratio appears to have a small oscillatory component of period 12 inh. We
suspect that this is related to subdominant contributions to the asymptotics (4) forB2(n),
because, as will be seen later, this does not appear to be the case forr2(n)r2(n+ h).

In order to extend the above calculation tor2(n)r2(n+ h), the contributions from thep-
primes must now be evaluated. Our approach remains the same: calculating the probability
of each possible contribution, which in this case may be obtained from (7); that is, if one
end of theh-marker hits thepk-lattice, the contribution will be(k + 1).

Let mp(h) = k . The lattices up topk are then connected by theh-marker. We again
make an inclusion/exclusion expansion. The first term corresponds to the situation where
both ends lie on thep0-lattice and so the contribution is(0+ 1) = 1. The probability
of one end hitting thep-lattice is 1

p
when k > 1. When this occurs, we subtract the

contribution which came from assuming both ends hitp0 and add to it the new contribution
with weighting (1+ 1)2 = 4, since both ends lie on thep-lattice together. For lattices
associated with higher powers, when one end lies onpj (j > k) the other lies onpk. In
this way we obtain the total contribution as follows:

1+ 1

p
(−1+ 4)+ 1

p2
(−4+ 9)+ 1

p3
(−9+ 16)+ · · · + 1

pk
(−k2+ (k + 1)2)

+ 2

pk+1
(−(k + 1)2+ (k + 1)(k + 2))

+ 2

pk+2
(−(k + 1)(k + 2)+ (k + 1)(k + 3))+ · · ·

=
k∑

j=0

2j + 1

pj
+ 2(k + 1)

pk

(
1

1− 1
p

)
=
(

1+ 1
p

)
(

1− 1
p

)2

(
1− 1

pk+1

)
. (25)

Now taking the product over allp-primes, the total contribution may be written in the
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form ∏
p

(
1+ 1

p

)
(

1− 1
p

)2

(
1− 1

pmp(h)+1

)
=
∏
p

1+ 1
p

1− 1
p

∏
p|h

1− 1
pmp(h)+1

1− 1
p

. (26)

This factor can then be combined with the result forB2(n)B2(n+ h) to give

r2(n)r2(n+ h) = Wm2(h)

∏
r

1− 1
r

1+ 1
r

∏
p

1+ 1
p

1− 1
p

∏
r|h

1− 1
rmr (h)+1

1− 1
r

∏
p|h

1− 1
pmp(h)+1

1− 1
p

= Wm2(h)L
2(1)

∏
q>2

(
1− 1

q2

)∏
q|h
q>2

1− 1
qmq (h)+1

1− 1
q

.

Finally, usingL(1) = π/4, we have

r2(n)r2(n+ h) = 1

2
Wm2(h)

∏
q|h
q>2

1− 1
qmq (h)+1

1− 1
q

(27)

where theq-product includes all odd prime divisors ofh. This represents our main result. It
holds for allh 6= 0. Theh = 0 result was calculated earlier (18); its divergence asn→∞
corresponds to theδ-function at the origin of the correlation function.

The consistency of this result can be checked by noting that averaging over a large
range of values ofh must give

〈r2(n)r2(n+ h)〉h = r22(n) =
(π

4

)2
. (28)

The average of (27) may be calculated directly using (8), which represents the probability
thatmq(h) = m. The result is

〈r2(n)r2(n+ h)〉h = 1

2

[
1

2
+
∞∑
j=1

(
2j+1− 3

2j

)
1

2j+1

]

×
∏
q>2

1

1− 1
q

[
1−

∞∑
k=0

1

qk

(
1− 1

q

)
1

qk+1

]
where the casesm2(h) = 0 andm2(h) > 1 have been considered separately inWm2(h).
Evaluating the sums and rearranging, we then find

〈r2(n)r2(n+ h)〉h = 1

2

∏
q>2

(
1− 1

q2

)−1

=
(π

4

)2
(29)

as required.
A further check may be made by numerical computation, as in the previous section for

B2(n)B2(n+ h). For each pair of representable integers found in that case, we calculate
the number of representations using (7). In this way we can computer2(n)r2(n+ h) and
compare the result with (27). The theoretical data from (27) are shown in figure 3, and the
ratio with the numerically calculated values is shown in figure 4 (note the change in scale).
The agreement (to within 2%) again supports the use of the probabilistic methods employed.
In particular, the ratio shows no discernible, systematic dependence uponh, suggesting that
we have captured the correct number-theoretical form of the fluctuations.
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Figure 3. Plot of r2(n)r2(n+ h) from (27).

Figure 4. Ratio of (numerics)/(theory) forr2(n)r2(n+ h).

It is noticeable that the agreement between the analytical result and the numerics is
closer for r2(n)r2(n+ h) than forB2(n)B2(n+ h). This is probably because forB2 the
correlation function depends upon the typical size ofn in the averaging range, whereas for
r2 it does not: in this case there is a non-zero limiting distribution.

4. Local smoothing

The result (27) forr2(n)r2(n+ h) incorporates all of the number-theoretical fluctuations
associated with the dependence on the prime factorization ofh. It was shown at the end of
the last section that if the correlation function is averaged over a large range of values ofh,
the underlying mean corresponds correctly tor2

2. Our aim now is to perform this calculation
more carefully in order to see how this limit is approached, and hence to characterize the
average size of the fluctuations.

To understand the asymptotic dependence on the size of the range, we define a local
smoothing by

〈r2(n)r2(n+ h)〉H = d

dH

H∑
h=1

r2(n)r2(n+ h). (30)

By this we mean that the average is the derivative with respect toH of the smooth function
that represents the leading-order asymptotics for the sum asH → ∞. It may therefore
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be interpreted as the smooth function which when integrated up toH coincides with the
asymptotic approximation to the sum.

5. Local Smoothing

The result (27) forr2(n)r2(n+ h) incorporates all of the number-theoretical fluctuations
associated with the dependence on the prime factorization ofh. It was shown at the end of
the last section that if the correlation function is averaged over a large range of values ofh,
the underlying mean corresponds correctly tor2

2. Our aim now is to perform this calculation
more carefully in order to see how this limit is approached, and hence to characterize the
average size of the fluctuations.

To understand the asymptotic dependence on the size of the range, we define a local
smoothing by

〈r2(n)r2(n+ h)〉H = d

dH

H∑
h=1

r2(n)r2(n+ h). (31)

By this we mean that the average is the derivative with respect toH of the smooth function
that represents the leading-order asymptotics for the sum asH → ∞. It may therefore
be interpreted as the smooth function which when integrated up toH coincides with the
asymptotic approximation to the sum.

We begin by observing that∏
q|h
q>2

1− 1
qmq (h)+1

1− 1
q

=
∏
q|h
q>2

(
1+ 1

q
+ 1

q2
+ · · · + 1

qmq(h)

)
. (32)

This product gives a sum over all the odd divisors ofh, that is, all of the divisors ofho
(including 1 andho itself), whereho is the odd part ofh, defined byh = 2m2(h)ho:∏

q|h
q>2

1− 1
qmq (h)+1

1− 1
q

=
∑
d|ho

1

d
. (33)

We now have

〈r2(n)r2(n+ h)〉H = 1

2

d

dH

H∑
h=1

Wm2(h)

∑
d|h

δo(d)

d
(34)

whereδo(d) is defined by

δo(d) =
{

1 if d odd

0 if d even.
(35)

We shall useδe(d) to denote the equivalent function, selecting even values ofd.
Including the explicit form ofWm2(h), we defines(H) as follows,

s(H) =
H∑
h=1

{
1 if m2(h) = 0
2− 3

2m2(h)
if m2(h) > 1

}∑
d|h

δo(d)

d
(36)

which can be rewritten

s(H) =
H∑
h=1

2
∑
d|h

δo(d)

d
−

H∑
h=1

δo(h)
∑
d|h

δo(d)

d
−

H∑
h=1

3δe(h)

2m2(h)

∑
d|h

δo(d)

d
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= 2
H∑
h=1

∑
d|h

δo(d)

d
−

H∑
h=1

δo(h)
∑
d|h

δo(d)

d
− 3

J∑
j=1

1

2j

H∑
h=1

m2(h)=j

∑
d|h

δo(d)

d

whereJ = [ logH
log 2 ], the largest value ofm2(h) for h 6 H , and the square brackets denote

the integer part of the argument.
As h ranges from 1 toH , each integer 16 d 6 H will occur as a divisor. The number

of such occurrences for a givend will be [ H
d

].
Considering only odd integersh 6 H , restricts us to counting the number of odd

multiples of d less thanH . This is simply [H2d + 1
2], the largest integerk such that

(2k−1)d 6 H . Similarly, the number of occurrences ofd as a divisor of 16 h 6 H when
h is of the formh = 2jho is [ H

2j+1d
+ 1

2].
We can now writes(H) as

s(H) =
H∑
d=1

δo(d)

d

(
2

[
H

d

]
−
[
H

2d
+ 1

2

]
− 3

J∑
j=1

1

2j

[
H

2j+1d
+ 1

2

])
. (37)

Let {x} denote the fractional part ofx; that is, {x} = x − [x]. WhenH is large, it is
reasonable to assume that the mean value of{H

d
} is 1

2 (and this can be proved to give the
correct leading order approximation to the sum). Approximating the fractional parts of all
quantities in this way we have

s(H) =
H∑
d=1

δo(d)

d

(
2H

d
− 1− H

2d
− 3

J∑
j=1

1

22j+1

H

d

)
. (38)

Evaluating thej -sum (to infinity, incurring an O(H−2) error) leaves

s(H) =
H∑
d=1

δo(d)

(
H

d2
− 1

d

)

' H
[ ∞∑
n=1

1

n2
−
∞∑
n=1

1

(2n)2

]
−
[ H∑
n=1

1

n
−

[ H2 ]∑
n=1

1

2n

]
(39)

where the convergent sums are taken to infinity. A direct evaluation thus gives that to
leading order

s(H) ' π2

8
H − 1

2
lnH. (40)

Recalling (34), we have

〈r2(n)r2(n+ h)〉H = 1

2

d

dH
s(H) (41)

and so withs(H) calculated as above,

〈r2(n)r2(n+ h)〉H ' d

dH

[(π
4

)2
H − 1

4
lnH

]
(42)

'
(π

4

)2
− 1

4H
(43)

in agreement with the result forr2(n) in the limit H → ∞. Finally, normalizing byr2
2,

we have that to leading order whenH is large

〈r2(n)r2(n+ h)〉H
r2

2(n)
' 1− 4

π2H
. (44)
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Figure 5. Ratio of numerics/theory for〈r2(n)r2(n+ h)〉H .

Figure 6. Plot of f (H) and 1
4 logH .

Thus, the fluctuation contribution tends to zero asH →∞. For a truly Poissonian spectrum
this term would be identically zero; that is, the normalized correlation function would have
a value of 1 for allh. It thus represents a small correction to randomness in the two-
point correlations. This is strikingly similar to the behaviour that follows from the Hardy–
Littlewood conjecture for the primes [10, 14], which is known to be responsible for the
GUE statistics of the Riemann zeros [7, 8].

From the same numerical data used to verify the two point results forB2 andr2, we can
also verify the predicted behaviour of〈r2(n)r2(n+ h)〉H . First, the ratio of the numerical
results to asymptotic expression (43) is shown in figure 5. To see the second term directly,
we also plot

f (H) = π2

16
H −

H∑
h=1

r2(n)r2(n+ h) (45)

in figure 6, and on the same graph show the curve of1
4 logH which, according to (42), this

quantity should be asymptotically described by. The results clearly confirm the presence of
the small correction to the Poissonian form.
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